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I. INTRODUCTION 

Fatigue crack growth in the air at elevated temperatures is often 

faster than the rate at room temperature. 

crack growth has been attributed to creep and/or oxidation [1,2,3 1. 

Creep induces grain boundary void formation and grain boundary cavi- 

tation, and the formation and the growth of grain boundary voids and 

cavities will accelerate fatigue crack growth. 

The accelerated fatigue 

Hull and Rimer 141 studied the growth of grain boundary voids 

under stress in polycrystal copper wire. The nucleation of creep 

cavities in a copper base alloy was observed by Fleck, Taplin, and 

Beevers 15 1 .  The nucleation and growth of cavities in iron during 

creep deformation at elevated temperatures was studied by Cane 

and Greenwood [ 6 ] .  Grain boundary cavity and void nucleations 

during creep under a sustained stress have been analyzed by a 

number of investigators [7 to 16 1. 

The cavity growth rate is related to either grain boundary 

vacancy diffusion or surface diffusion. 

has the form of the Arrhenius relation. However, grain boundary 

cavity nucleation and growth under a cyclic load and the relation 

between the growth rates of grain boundary cavities and fatigue 

crack have yet to be studied. 

The cavity growth rate 

Gibb's free energies of metal oxide formation are negative. 

When in direct contact with oxygen, metals oxidize easily, and 

the rate of oxidation depends on the rate of diffusion of oxygen 

or metal through the oxide layer. Grain boundary is a site 

of high energy and a path of rapid diffusion. Therefore, the oxidation 
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11. GRAIN BOUNDARY OXIDATION PENETRATION 

Oshida and Liu [311 have s tudied g r a i n  boundary oxida t ion  pene- 

t r a t i o n  i n  a n i c k e l  base superal loy,  TAZ-8A, under a s t r e s s - f r e e  

condi t ion.  

w a s  oxidized i n  a i r .  The oxidat ion temperatures w e r e  600, 800, and 

1000°C, and t h e  exposure t i m e s  var ied  from 100 t o  1000 hours. 

ox ida t ion ,  each coupon w a s  sect ioned,  and t h e  sec t ioned  su r face  w a s  

examined under an o p t i c a l  microscope. 

a c ros s  s e c t i o n  of a test coupon. 

deeper than the  su r face  oxide. 

Edch disk coupon, 15 mm i n  diameter and 5 mm i n  th ickness ,  

Af t e r  

Figure 1 shows the  p i c t u r e  of 

The g ra in  boundary oxide pene t r a t e s  

On each sec t ioned  sur face ,  t h e  g r a i n  boundary oxida t ion  penet ra t ion  

va r i ed  widely from one g ra in  boundary t o  another.  

boundary oxida t ion  pene t r a t ion  depth, a of a sec t ioned  su r face  

w a s  measured. Af t e r  t h e  measurement, a t h i n  l a y e r  of t he  coupon, 

approximately 80 um th i ck ,  w a s  ground o f f ,  t h e  new su r face  w a s  pol ished,  

and another  maximum g r a i n  boundary oxida t ion  pene t r a t ion  depth w a s  

measured. This process  w a s  repeated twelve t i m e s  f o r  each test 

coupon. Altogether ,  144 d a t a  points  w e r e  c o l l e c t e d  a t  the  t h r e e  

oxida t ion  temperatures,  T, and a t  var ious  exposure t i m e s ,  t. The 

regress ion  a n a l y s i s  of t h e  da t a  g ives  the  following empir ica l  r e l a t i o n .  

The maximum gra in  

m' 

n 
a m = a t  exp(-Q/RT) (1) 

where a i s  i n  cm; t ,  i n  seconds; t he  a c t i v a t i o n  energy, Q i s  4.25 Kcal/mol; 

T i n  OK; and R = 1.987 cal/mou°K. 

c o e f f i c i e n t  of au to-cor re la t ion  i s  0.96. 

m .  
-3 

a = 1 . 3 4  x 10 . n = 0.25. The 
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Reuchet e t  a l .  [32,331 s t u d i e d  oxidized depth  of MC c a r b i d e s  i n  

a cobalt-base supe ra l loy  (Mar M509). They found a t i m e  exponent 

n = 0.25. S t o t t  e t  a l . [34 ,35 ]  s tud ied  i n t e r g r a n u l a r  ox ida t ion  i n  

Ni -Cr  a l l o y s ,  and they found n = 0.48 f o r  60Ni - 40Cr a l l o y ,  0.51 

f o r  N i  - 15.10- - 1.U a l l o y ,  and 0.66 f o r  N i  - 28.8Cr - 1 . O A 1  a l l o y .  

They concluded t h a t  t h e  i n t e r g r a n u l a r  oxide p e n e t r a t i o n  depth i n  N i - C r  

a l l o y s  followed a pa rabo l i c  rate r e l a t i o n .  

Grain boundary oxide pene t r a t ion  i s  c o n t r o l l e d  by g r a i n  boundary 

d i f f u s i o n  of  oxygen, and g r a i n  boundary d i f f u s i o n  i s  a func t ion  of t h e  

r e l a t i v e  o r i e n t a t i o n s  o f  t h e  two neighboring g r a i n s  [36,37,38 b as 

shown i n  Figure 2.  The v a r i a t i o n  of g r a i n  boundary d i f f u s i o n  rate 

could be one of t he  causes  f o r  t h e  s t a t i s t i c a l  s c a t t e r  of t h e  measured 

oxide  pene t r a t ion  depths.  

A t  any given combination of temperature ,  T, and exposure t i m e ,  t ,  

t h e  va lue  of a can be c a l c u l a t e d  from t h e  measured a - va lue  by us ing  i m i  

Equation (1) .  The v a r i a t i o n  of  t h e  c a l c u l a t e d  a-values r e f l e c t s  t h e  

s t a t i s t i c a l  s c a t t e r  of the measured a -values.  Thc Weibul l  p l o t  of 

a l l  of t h e  L44 va lues  of ai i s  shown i n  Figure 3 .  

bu t ion  func t ion  is 

m 

The Weibull d i s t i i -  

where P(a.) is t h e  p r o b a b i l i t y  of f ind ing  an a-value less than ai 

on a sec t ioned  su r face .  a is the  l o c a t i o n  parameter. I t  is  t h e  

h o r i z o n t a i  s h i f t  f o r  each of t he  d a t a  po in t s  so  t h a t  a l l  o f  the 

po in t s  w i l l  b e  on a s t r a i g h t  l i n e  i n  the  p l o t .  b is t h e  s l o p e  o f  

t he  l i n e ,  and i t  is c a l l e d  shape  parameter o r  Weibull modulus. 

Q and no = a set  the  scale f o r  t he  Weibull d i s t r i b u t i o n .  a. is 

the  value of  (ai - a ) a t  In  l n { l / f l  - P(pi>J} = 0. 
-3  Figure 3 ,  a u =  0.53 x 10 

experimental  d e t a i l s  and a more 

1 

U 

b 
0 0 

For t h e  d a t a  i n  
' - 3  U 

, b = 1.85, and a = 0 . 5 1  x 10 . The 
0 
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detailed discussion on the oxide formation and the statistical scatter 

. 

are given in Reference [31]. 

If the grain boundary oxidation penetration rate is controlled 

by the grain boundary diffusion rate, and if grain boundary diffusion 

can be considered as a one-dimensional flow, the oxidation penetration 

depth can be written as 

0.5 a - at exp (-Q /2RT) 
m gb 

(3) 

is the activation energy of grain boundary diffusion. This result 
Qgb 
is certainly different from the empirical relation, Equation (1). 

The coefficient of grain boundary diffusion is several orders of 

magnitude higher than that of lattice diffusion. Nevertheless, the 

grain boundary diffusion kinetics are affected by lattice diffusion. 

Whipple [39] has analyzed the effects of lattice diffusion on grain 

boundary diffusion. These effects for TAZ-8A have yet to be assessed 

quantitatively. 

The kinetics of grain boundary oxide penetration will certainly 

be related to the morphology of the oxide. Grain boundary oxides 

have two different shapes: pancake type and cone type. Furthermore, 

the detailed chemical processes of oxidation have also to be taken into 

consideration in a theoretical analysis. Grain boundary oxide penetration 

is further complicated by the internal stresses caused by the oxide 

forma tion. 

For the moment, Equation (1) can be treated as an empirical 

relation. Perhaps, the oxide penetration depth at a crack tip can be 

written in the form 
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where D is diffusion coefficient, and C is the magnitude of  the 

diffusion jumping vector or interatomic spacing. 

the function, F, are unknown. Assuming a simple power relation, we have 

The details of 

a = f3C(Dot/C)n exp(-nAH/RT) = atn exp(-Q/RT) (5) 
m 

D is the diffusion coefficient at T = 0. a, B ,  and n are 

constants. The apparent activation energy, Q, for grain boundary 

oxide penetration is not necessarily equal to the activation energy 

of diffusion, AH. If the penetration depth is dependent on both 

grain boundary and bulk diffusions, am is related to both (D 

0 

t/C) 
gb 

and (Dbt/C). D and D are grain boundary and bulk diffusion 

coefficients. 

gb b 

. 
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111. THE INTERMITTENT MICRO-RUPTURE MODEL FOR HIGH TEMPERATURE 
FATIGUE CRACK GROWTH 

Fatigue crack growth at elevated temperatures is sensitive to 

both frequency and temperature. Figures 4a [40, 411 and 4b [421  

show the frequency and temperature effects on the fatigue crack 

growth in IN-100. The data merge onto two limiting lines, one 

on the right and one on the left of the data band. Along these 

two limiting lines, the fatigue crack growth rate is independent 

of frequency and temperature. The right hand side limiting line 

is for high frequency and low temperature. The left hand side 

limiting line is for high temperature and low frequency. However, 

it is not certain that the left limiting line always exits. Between 

these two limiting lines, da/dN is sensitive to both frequency and 

temperature. "da/dN" increases with temperature and decreases 

with an increase in frequency. 

At a constant AK level and at a given test temperature, the 

more detailed frequency effects on the fatigue crack growth rate 

are shown in Figure 5 [41,43-48 1. The cyclic crack growth rates, 

da/dN, of a number of materials in the low frequency region are 

inversely proportional to cyclic frequency, v , and are linearly 

proportional to the length of the time period per cycle. The 

time rate of the fatigue crack growth, da/dt = (da/dN)(l/v), is 

constant. In this region, the fatigue crack growth is intergranular. 

The fatigue crack growth rate decreases as cyclic frequency in- 

At a very high frequency, the fatigue crack growth rate is creases. 

independent of frequency and temperature. It corresponds to the right 
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hand side limiting line. At such a high frequency, the fatigue crack 

growth is transgranular, and the abserved fatigue striations on ;1 crack surface 

indicate that fatigue crack growth is caused primarily by crack tip 

cyclic plastic deformation. 

In the intermediate frequency region, a fatigue crack grows in a 

mixed mode both intergranularly and transgranularly, and the growth 

rate is sensitive to both frequency and temperature. 

For constant-K tests at elevated temperatures, two crack growth 

features are common: (i) the time rate of crack growth is constant, 

(i.e. da/dt = constant) and (ii) crack growth is intergranular. Crack 

growth at constant-K is often referred to as creep crack growth. 

In the low frequency region, da/dN is inversely proportional 

to frequency, w ,  and frequency is the inverse of the time period per 

cycle. Therefore, in the low frequency region, the time rate 

of fatigue crack growth is also constant as the creep crack growth 

rate. Furthermore, fatigue crack growth in this region is also 

intergranular. Therefore, fatigue crack growth in the low frequency 

region, where the intergranular crack growth rate da/dN is inversely 

proportional to v , is often referred to as creep crack growth. 

However, a few questions remain unclear. Does creep crack 

growth imply that the fatigue accelerated crack growth is caused by grain 

boundary void nucleation and growth and/or by crack tip creep 

deformation? Does the inverse relation between da/dN and v 

preclude the possibilty that grain boundary oxidation is the under- 

lying cause for the accelerated fatigue crack growth at elevated 

temperatures? 

cause of the accelerated fatigue crack growth at elevated temperatures. 

In this section, oxidation will be analyzed as a possible 
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In  t h e  low frequency region of Figure 5, t h e  f a t i g u e  c rack  growth 

rates of Inconel  718, Inconel  X-750, Astroloy a t  7OO0C and 76OoC, and 

Cr-Mo steels, are i n v e r s e l y  propor t iona l  t o  frequency. The c y c l i c  

l oad ing  p a t t e r n s  are a l s o  shown in  t h e  f igu re .  

As t ro loy ,  a hold t i m e ,  A t H  at  KmX w a s  appl ied .  

Cr-Mo steels, and Ast ro loy  a t  7OO0C, a t r i a n g u l a r  loading p a t t e r n  w a s  used. 

For Inconel  718 and 

For Inconel  X-750, 

Antolovich et  al. [ 4 9 ]  found t h a t  oxide i n  a smooth specimen 

ruptured  when t h e  app l i ed  stress reached a c r i t i ca l  value.  The app l i ed  

stress a t  rup tu re  is i n v e r s e l y  r e l a t e d  t o  t h e  oxide s ize .  The c r i t i ca l  

c rack  t i p  oxide s i z e  a t  r u p t u r e  must b e  r e l a t e d  t o  t h e  stress i n t e n s i t y  

f a c t o r ,  K. The oxygen a r r i v i n g  a t  a c rack  t i p  w i l l  have t o  d i f f u s e  

a long  t h e  g r a i n  boundary i n t o  the reg ion  ahead of t he  c rack  t i p  

forming oxide. When t h e  c rack  t i p  g r a i n  boundary oxide reaches  t h e  

c r i t i ca l  size, 6a, t h e  oxide w i l l  r u p t u r e  and t h e  c rack  w i l l  grow 

by t h e  amount of 6a. 

t h i s  process  of g r a i n  boundary d i f fus ion ,  g r a i n  boundary ox ida t ion ,  

r u p t u r i n g  of t h e  g r a i n  boundary oxide, and crack  advancing w i l l  b e  

repea ted  again.  

g r a i n  boundary oxides  can reoccur i n t e r m i t t e n t l y  many times dur ing  a f a t i g u e  cyc le .  

Cof f in  (1) has suggested t h i s  process as a mechanism of  t h e  a c c e l e r a t e d  

f a t i g u e  c rack  growth a t  e l eva ted  temperatures.  I n  t h i s  p a p e r ,  a 

q u a n t i t a t i v e  model of i n t e r m i t t e n t  micro-ruptures of  g r a i n  boundary 

oxide  w i l l  be cons t ruc ted  and i t  w i l l  be shown t h a t  t h e  i n t e r m i t t e n t  

micro-ruptures of g r a i n  boundary oxide can l e a d  t o  a f a t i g u e  c rack  

growth rate i n v e r s e l y  propor t iona l  t o  v .  

Once t h e  crack t i p  advances t o  i t s  new p o s i t i o n ,  

This  process  of micro-ruptures of c rack  t i p  

The tests with ho:d time w i i i  be anaiyzed first.  h r i n g  t h e  
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hold time, AtHaC 

take place. 

to the "tip" of the oxide. Therefore, the time increment, 6t, 

necessary for the oxide starting from the crack tip, to reach the 

critical rupture size, 6a, is given by Equations 44)  and (5). 

simple power relation, we have 

KmX, a number of intermittent micro-ruptures will 

Assume that every micro-rupture will advance the crack 

For a 

The number of micro-ruptures during At is H 

1/ n m = AtH/6t = (At D /C)(BC/6a) 
H gb 

I1  I 1  m is proportional to At Both m and At are inversely 

proportional to frequency , W .  

H' H 

Fatigue crack growth per cycle is the sum of the rapid and 

intermittent micro-ruptures per cycle. 

(7) 
Y 

- =  a a  
dN 

Substituting Equation (7) into Equation (8), we have 

da/dN are inversely proportional to V .  



3 For n = 0.25, da/dN is inverse ly  p ropor t iona l  t o  6a . Fatigue 

c rack  growth rate i n c r e a s e t a p i d l y  as 6a becomes s m a l l .  b a  is  

smaller i f  t h e  oxide  is more b r i t t l e .  

For a given material,6a and m are func t ions  of K dur ing  max 

t h e  hold t i m e .  Therefore ,  w e  have 

as shown by t h e  d a t a  i n  t h e  low' frequency reg ion  i n  Figure 5. 

For t h e  t r i a n g u l a r  loading  p a t t e r n ,  l e t  us  assume t h a t  

t h e  c r i t i ca l  c rack  t i p  oxide s i z e ,  6a,  a t  rup tu re  is a func t ion  of 

t h e  c rack  t i p  f i e l d ,  t h e  c rack  t i p  f i e l d  can be cha rac t e r i zed  by t h e  

stress i n t e n s i t y  f a c t o r ,  K, and t h e  c rack  t i p  f i e l d  is independent of 

t h e  c y c l i c  frequency, V .  

Figure 6 shows t h e  t r i a n g u l a r  loading  a t  two d i f f e r e n t  f requencies .  

(We use  t h e  t r i a n g u l a r  loading  a s  an i l l u s t r a t i o n ,  bu t  t h e  fol lowing 

a n a l y s i s  is a p p l i c a b l e  t o  any o the r  wave shape).  I f  t h e  c rack  t i p  

f i e l d s  a t  K. are t h e  same a t  both of t hese  two Erequenices,  t h e  c r i t i c a l  

oxide p e n e t r a t i o n  depths ,  6a. a t  rup tu re  must be t h e  same. During t h e  

t i m e  i n t e r v a l  A t .  a t  K a number of i n t e r m i t t e n t  micro-ruptures w i l l  

t ake  place.  A t  t h e  same K.  l eve l ,  t h e  t i m e  increment,  6 t i ,  necessary 

f o r  t h e  oxide  t o  reach  t h e  c r i t i ca l  s i z e ,  is d i r e c t l y  r e l a t e d  t o  

1 

1 

1 i' 

1 

6ai, Equation (6) .  The number of micro-ruptures ,  mi,  dur ing  t h e  t i m e  

i n t e r v a l ,  A t .  a t  Ki is simply A t i / 6 t i .  "m" ' is  p ropor t iona l  t o  A t  and 

i n v e r s e l y  p ropor t iona l  t o  frequency, v .  This  inve r se  r e l a t i o n  between 

1 

m A t i ,  and u is t r u e  a t  any Ki-level. 

The f a t i g u e  c rack  growth r a t e  is the  sum of t h e  r ap id  and i n t e r -  

i' 

mittent micro-ruptures a t  a l l  the K - l e v e l s  dur ing  one cycle .  
i 
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11 i i  m is inve r se ly  p r o p o r t i o n a l  t o  V a t  any K-level. Therefore ,  da/dN 

is i n v e r s e l y  p r o p o r t i o n a l  t o  V .  

The crack growth rate a t  a frequency V can a l s o  be  w r i t t e n  as 

da -) is  t h e  c rack  growth rate a t  a r e f e r e n c e  frequency, v . Equations 

(11) and (12)  f o r  a r b i t r a r y  wave shapes are de r ived  w i t h  t h e  assumption 

t h a t  K is  capable o f  c h a r a c t e r i z i n g  t h e  c rack  t i p  f i e l d  and the  c rack  

t i p  f i e l d  i s  n o t  a f f e c t e d  by c y c l i c  frequency. However, t h e  c reep  

stress r e l a x a t i o n  a t  a c rack  t i p  and the  i n t e r n a l  stress caused by 

o x i d a t i o n  have n o t  been taken i n t o  account.  They could be t h e  reasons  

why some o f  the  d a t a  i n  t h e  low frequency reg ion  i n  F igure  5 do not  

obey t h e  inve r se  r e l a t i o n .  No such assumption i s  necessary  fL)r the  

d e r i v a t i o n  of Equation (8) f o r  t h e  c rack  growth rate wi th  a holdtime 

at Kmax* 

dN vo 0 

In t h e  l o w  frequency reg ion ,  when t h e r e  i s  enough t i m e  f o r  repea ted  

g r a i n  boundary ox ida t ion  p e n e t r a t i o n s  and r epea ted  micro-ruptures  

of t h e  oxides  t o  t ake  place, t h e  f a t i g u e  c rack  growth rate along 

an embr i t t l ed  g r a i n  boundary i s  i n v e r s e l y  p r o p o r t i o n a l  t o  t h e  

f r e q u e n q ,  and crack  grovth  is i n t e r g r a n u l a r .  Therefore ,  t hese  

two c rack  growth f e a t u r e s  of i n v e r s e  r e l a t i o n  of da/dN wi th  frequency 

and i n t e r g r a n u l a r  c rack  growth can be caused by g r a i n  boundary 

ox ida t ion ,  and they cannot be a t t r i b u t e d  t o  creep cracking  wi thout  

1 2  



I -  

a d d i t i o n a l  s u b s t a n t i v e  experimental  evidence. Such inve r se  r e l a t i o n -  

s h i p  in t h e  low frequency region i s  shown i n  Figure 5 f o r  Inconel  

718, Inconel  X-750, Astroloy,  and Cr-Mo steels. 

. 

In o rde r  t o  accelerate f a t i g u e  c rack  growth, t h e  oxygen atoms must 

reach  t h e . c r a c k  tip d u r i n g  the process  of c rack  growth r a t h e r  than 

a f t e r .  Therefore ,  t h e  acce le ra t ed  f a t i g u e  c rack  growth is c l o s e l y  

r e l a t e d  t o  t h e  rate of t h e  t r a n s p o r t  of oxygen. 

For a given material a t  a given app l i ed  K level, t h e r e  e x i s t s  

an i n t r i n s i c  c rack  growth rate, (da/dN)f,  which is caused by t h e  

f a t i g u e  process  of c y c l i c  crack t i p  p l a s t i c  deformation a lone ,  without  

t h e  e f f e c t  of oxidat ion.  

s p e c i e s  does not  have enough t i m e  t o  travel i n  o rde r  t o  fo l low t h e  

c rack  t i p .  

f a t i g u e  c rack  growth. 

c y c l i c  p l a s t i c  deformation, and t h e  growth is  t r ansg ranu la r .  The 

da/dN is n o t  l i m i t e d  by the  t r anspor t  p rocess ,  and i t  is independent 

of frequency and temperature,  so t h a t  t h e  c rack  growth rate d a t a  i n  

F igures  4a and 4b w i l l  merge t o  t h e  r i g h t  hand s i d e  l i m i t i n g  l i n e  

of h igh  frequency and low temperature and t h e  d a t a  i n  Figure 5 w i l l  

level o f f  i n  t h e  high frequency region.  

deformation is  dependent on frequency and temperature ,  da/dN 

w i l l  be weakly dependent on frequency and temperature.  

A t  a very  high frequency, t h e  d i f f u s i n g  

Therefore ,  ox ida t ion  does not  have much e f f e c t  on t h e  

The f a t i g u e  c rack  growth is caused by 

I f  t h e  c y c l i c  p l a s t i c  

I n  Figure 5, between the  low-frequency f a s t e r  i n t e r g r a n u l a r  

f a t i g u e  c rack  growth caused by t h e  i n t e r m i t t e n t  micro-ruptures,  and 

t h e  high-frequency slower t r ansg ranu la r  i n t r i n s i c  f a t i g u e  c rack  

growth due t o  c y c l i c  p l a s t i c  deformation, t h e r e  e x i s t s  a reg ion  

of mixed mode of bo th  in t e rg ranu la r  and t r ansg ranu la r  c rack  growth, 

as observed by Pe l loux  and Huang [ 4 6 1 .  
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IV. DISCUSSIONS 

The accelerated fatigue crack growth at elevated temperatures has 

been attributed to either oxidation o r  creep damage. Both oxidation 

and creep have been shown as possible mechanisms for the high temperature 

fatigue damage. Grain boundary void formation and cavitation are the 

result of surface diffusion and/or grain boundary vacancy diffusion, 

while grain boundary oxidation is primarily caused by the diffusion 

of oxygen. The kinetics of the diffusions of vacancies and 

oxygen atoms is shown schematically in Figure (7). The figure 

indicates that one mechanism dominates in the high temperature region 

and the other dominates in the low temperature region. Therefore, 

the question is not which one of these two mechanisms causes high 

temperature fatigue damage. The problem is to define the different 

regions dominated by these two different mechanisms. 

The quantitative relations between the diffusion rates and 

the rate of oxide rupture and the rate of nucleation and growth of voids 

and cavities, and their relations with fatigue crack growth have not 

yet been established. It is obvious that fatigue crack growth rate 

is not necessarily linearly proportional to the diffusion rates, 

therefore, the activation energy for diffusion may not be equal to 

the "activation energy" for fatigue crack growth. 

relationships between da/dN and the diffusion rates of vacancies 

and oxygen atoms depend on the detailed physical processes of 

fatigue crack growth. If a simple power relationship exists between 

da/dN and diffusion rate, then the rate, R (in Figure 7) can also be 

interpreted as the crack growth rate caused by the diffusion process. 

The functional 
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Without a clear understanding of the underlying reasons for 

the observed fatigue crack growth behaviors, it is difficult and 

unsafe to extrapolate a limited amount of experimental data to make 

fatigue life predictions. For example, to extrapolate the 

crack growth data in Figure 5, from the l o w  frequency region into the 

high frequency region or vise versa will underestimate the crack 

growth rate. Therefore it is unsafe. 

If creep is the damage mechanisms for high temperature fatigue, 

and if grain boundary creep cavitation is induced by a tensile stress 

together with vacancy diffusion, the tensile stress in a redundant 

structure will decrease by creep stress relaxation, and the decreased 

tensile stress will reduce the rate of cavitation. Thermal stress 

is a transient stress. Thermal stress will be relaxed as creep 

deformation takes place. In a sense, it is "redundant". Therefore, 

creep damage may not be as important in thermal fatigue or thermal- 

mechanical fatigue in structural components, where creep relaxation 

takes place. 

Multidisciplinary studies based on empirically observed physical 

processes are needed to develop mechanistic and quantitative models 

5or oxidation damage and creep damage in high temperature fatigue. 

The first step in the development of such models for oxidation damage 

is a quantitative analysis of grain boundary oxidation. 

The high temperature fatigue crack growth model of intermittent 

micro-ruptures of grain boundary oxides gives an inverse relationship 

. between fatigue crack growth rate, da/dN and the cyclic frequency, v .  

This inverse relation is observed for a number of high temperature alloys 

1 5  



in the low frequency region. 

possible mechanism for the accelerated fatigue crack growth at elevated 

temperatures. 

Grain boundary oxidation is certainly a 

Grain boundary oxidation was studied for samples free of stress. 

The effects of an applied stress and an imposed cyclic strain on the 

diffusion of oxygen and oxidation still need to be addressed. 

Equation (1) is for grain boundary bulk oxide penetration. It 

is conceivable that even a monolayer of oxide will reduce the grain 

boundary cohesive strength and will accelerate fatigue crack growth. 

As indicated by the above discussion on the needs for additional 

knowledge, the work on the effects of oxidation on high temperature 

fatigue life is far from completed. 

the initial steps to construct a mechanistic and quantitative model 

based on the empirical data of grain boundary oxide penetration. 

This study is only one of 

16 



v. SUMMARY 

Grkn 

at elevated 

AND CONCLUSIONS 

boundary oxidation may accelerate 

temperatures. The grain boundary 

fatigue crack growth 

oxidation kinetics 

was studied. 

from one grain boundary to another. The measured grain boundary 

oxide penetration data agree well with the Weibull distribution. 

A model of intermittent micro-ruptures of the grain boundary oxide 

is constructed for the accelerated fatigue crack growth at elevated 

temperatures. 

model agrees well with the observed inverse relation between da/dN 

f o r  a number of high temperature alloys. 

Grain boundary oxide penetration depth varies widely 

The derived fatgiue crack growth rate based on the 

1 7  
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Figure 1 Cross-sec t ion  of oxidized coupon of TAX-8A a! 
1000°C f o r  500 h o u r s  
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Boundary angle, (deg.) 

Figure 2 Grain boundary angle effect on the penetration of 
radioactive nickeloalong nickel bicrystals grain 
boundaries at 1050 C (37) 
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Figure 6 Cyclic loading at t w o  different frequencies 
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